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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3674

THEORETICAL PRESSURE DISTRIBUTIONS FOR SOME SLENDER

WING-BODY COMBINATIONS AT ZERO LIFT

By Paul F. Byrd

SUMMARY

Pressure distributions are calculated for some symmetrical wing-body
combinations at zero lift. The theory of the calculations is based on
the assumption of extremely slender wings and bodies and yields results
for both subsonic and supersonic speeds. The examples considered are
swept wings of constant chord mounted on bodies of nearly cylindrical
form.

Of particular interest is the effect of indenting the body on the
distribution of pressure over the wing. When the indentation is such as
to maintain a constant total area of the cross sections normal to the
stream, the theoretical pressure disturbances remain small throughout the

j transonic range. With such indentation the isobars tend to remain smooth
and nearly parallel to the sweep of the wing surface.

INTRODUCTION

In several papers, important extensions to the Munk-Jones slender-
body theory (refs. 1 and 2) for lifting wings and bodies have been made
to include the theoretical effects of thickness on the aerodynamics of
wings and wing-body combinations. Ward (ref. 3), solving the linearized
differential equation for the perturbation velocity potential by opera-
tional methods, and employing asymptotic expansion of the solution,
investigated the flow around bodies of general cross section at supersonic
flight speeds. By a different procedure, similar results for a wing,
body, or wing-body combination at subsonic speeds have been developed
by Heaslet and Lomax (refs. 4 and 5). An analysis for subsonic flow was
also carried out independently by Adams and Sears (ref. 6) who, in addi-
tion, made an extension for not-so-slender wings. Confining themselves
to wings at zero angle of attack, Keune (ref. 7) and Oswatitsch and Keune
(ref. 8) have recently obtained a slender-body theory that is slightly
different from those of references 4, 5, and 6. In a more recent report,
1Supersedes NACA RM A54J07 by Paul F. Byrd, 1954.
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Harder and Klunker (ref. 9) have applied the basic ideas of the slender-
body approximation to the nonlinear transonic equation for the velocity
potential.

The principal object of the present investigation is to apply the
general method of reference 4 in calculating the pressure distribution
for some special cases of nonlifting slender wing-body combinations in
subsonic and supersonic flow. The wing of the combinations is swept back
and has a symmetrical section with rounded leading edges. Determination
is made of the pressure for the wing alone and for cases when the wing is
mounted on a circular cylinder or combined with a body indented such that
the axial variation of cross-sectional area of the combination is constant.
The effects of Mach number and sweep angle are included in the results
presented.

LIST OF IMPORTANT SYMBOLS

bo  value of x at which so = s(x)

co  root chord

-2u
C p pressure coefficient, U

C p pressure coefficient on indented wing-body combination

10 over-all length of the wing

m slope of wing leading edge (See sketch (f).)

M free-stream Mach number

r polar distance in y,z plane (4  + Z2)

Re real part of a complex quantity

Ro radius of cylindrical portion of body

R(x) radius of indented body of revolution

sgn(x-1) sign of (x-t)

so maximum value of s(x)

s(x) local semispan

8(x) local cross-sectional area of wing alone
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t(x) spanwise distance from x axis to wing trailing edge

u perturbation velocity in the x direction

Uo velocity of free stream

v perturbation velocity in the y direction

Vr radial component of velocity in yz plane

w perturbation velocity in the z direction

x,y,z Cartesian coordinates (x downstream, y to starboard, z
upward)

e polar angle in yz plane

X(x,y) slope of wing surface in x direction

perturbation velocity potential

92 part of potential satisfying pyy + =zz 0

* complex variable (y + iz)

t1 complex variable (y, + iz1 )

* constant related to T0

TO  maximum thickness of wing section

Subscripts

B body

1 lower surface of the wing (z = 0 plane)

sub subsonic

sup supersonic

u upper surface of the wing (z a 0 plane)

W wing
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ANALYSIS

The thickness distribution of a symmetrical wing is prescribed.
Under the restriction that the thickness is small and that the configura-
tion is slender, formulas to be applied later (see "Applications" section)
will now be briefly presented for determining the pressure coefficients
for particular nonlifting wing-body combinations. Equations are first
given for the wing without a body, and are then modified for cases when
the wing is mounted on a circular cylinder or on an indented body of
revolution.

Nonlifting Wing Alone

The differential equation and boundary conditions.- Expressed in
terms of the perturbation potential q(x,y,z), the basic linearized par-
tial differential equation for subsonic as well as supersonic flow is the
familiar Prandtl-Glauert equation

(i - Mo')Txx + (Pyy + (Pzz = 0(1

where Mo  is the free-stream Mach number. If the surface of a wing
z(x,y) is given, solutions to the differential equation must satisfy the
boundary condition that the flow is parallel to the wing surface. When
the wing is thin, it is sufficient to satisfy this requirement in the
plane z = 0. Analytically, the expression of the condition is

aZu
= Wu(x,y) Uo = U u(x,y) (2)

Z=+O

where Uo is the free-stream velocity and wu(xy) is the vertical
induced velocity on the upper side of the z = 0 plane.

Velocity potential.- When the flow is supersonic, the formula for
the perturbation potential subject to the boundary condition (2) is known
to be (e.g., see ref. 10)

(P(x,y,z) = - i wu( ) arccosh x - d (3)
Tx ifo (y 1)2 + z2

hiT
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where the region of integration T is the portion of the plan form lying
within the Mach forecone from the point x,y,z. In the case of subsonic

flow fields, the solution of the differential equation (1) may be expressed
in the form

P(xyz) 2 6 wu(to) arcsinh - d dn d 4
-T 2- ) + 2

with T now extending over the entire plan form. These two solutions

yield the potential due to a distribution of sources of strength propor-
tional to the slope of the wing surface Xu(xy).

When the wing is slender, that is, if z is consideredx-

very small, further approximations to the linearized potential (3) and (4)

can be readily made. In this event, one may employ the approximate
relations

x - ln 2(x -arccosh ;, I
xfiy - + Z2  f -)2 +( 5)

arcsinh x A9 sgn(x - )ln 21x

y ) 2iy + + z

where the symbol sgn(x - g) means that the sign of (x - ) is to be
taken. '__

Consider now a thin pointed wing
of symmetrical section with straight
or sweptforward trailing edges as is
shown in sketch (a). Use of the

relations (5) in equations (3) and (4)
then gives the result (ref. 4)

j(x,y,z) = q 2(x,y,z) + g(x) (6)

Sketch (a)
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where

%(x,y,z) = N(X,T)in(Y -T)I + za]dn (7)
s2(X)

and

g(x) - -- - S'(t)ln 2(x dt (8a)21t 6x f3
0

for supersonic flow, and

u0 6p 1  21x -j
g(x) - -J sgn(x - E)S'(E)ln dt (8b)

0

for subsonic flow. The function S'(x), the derivative of th cross-
sectional area of the wing in a yz plane, is found from

s3(x)

S'(x) =2 zu(x,yl)dn (9)
s2(x)

It is seen from equation (6) that the slender-body approximation to
the linearized supersonic and subsonic potentials consists of two parts.
The first part (92) in each case is independent of Mach number and is a
harmonic function in the transverse plane; that is, it satisfies the two-
dimensional Laplace equation

yy + IPzz 0 (10)

The second part (g) depends on the cross-sectional area of the wing and
is a function of x and 0 only.

Inspection of equations (6) and (8) shows that the value of the
potential for a particular wing at some Mach number M, can be written
in terms of the potential given at another Mach number Mo . Thus

'AWE

___Y
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U° S1

P 1 = P + o 0(x)ln

(lla)

Uo
'Psubo1 =PsUbo + T S'(x)In 01

with 0 = i - iiand 0o = /IM - l. The supersonic and subsonic
potentials may also be related. If one has already found an expression
for the supersonic potential, he can then obtain the subsonic potential
by means of the equation

+O S'x Osub U0  oSQ
Uo sx) Uo ° S' ( ) (1(nb

tsub = 9)sup +  
-xA + .-' f b

Certain symmetrical wings whose trailing edges are swept back as in
sketch (b) can also be treated by the simplified theory, provided the
chordwise variation in shape of the
cross sections is sufficiently smooth jLa
and gradual that the assumption of
two-dimensional transverse flow may _

reasonably be applied. Since the T y
wing is at zero angle of attack and y
the flow is symmetrical about the I.SA)
xy plane, the source distribution CO

Xu(x,y) in the plane of the wing in / /

region W between the axis and the I_
trailing edge is set equal to zero. ''tfx - 2 _Y= -0)
If the limits of integration are 4, /
properly adjusted, equation (6) will
then formally still apply and yield--
expressions for the potential in the
two regions 1 and 2 of the sketch. X
Thus for region 1, in the z = 0 plane,
one obtains Sketch (b)

91sup= J xSu(x,n)inly 2 - fJdTj

0

C x) S1()ln (x (x < co) (12a)

0

.................................
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and in region 2

sup fr Nu(x, )in I y2 -
2 Id - - )dg -

t 0

- S2'(ln (x t- (x > co) (12b)
c0

where

s(x)
S1,(x) / u(xn)dn, 0 <_ x co

0

(13)
s(x)

S2 '(x) 4 zJ)u(x,I)dn, co < x < 1o
t(x)

The subsonic solution is obtained from the supersonic solution by using
equation (llb).

Pressure coefficient.- After determining the potential for a wing
from the equations in the foregoing section, the pressure on the surface
of the wing is found by differentiation. The pressure coefficient is
related to the perturbation velocities by the equation (ref. 4)

cp x, y,0) =-+ C ~) (14a)
luo x U0 + U0 T Z- \d~.Jz=O

which is an approximation to the complete Bernoulli equation consistent
with both the linearized differential equation (1) and the assumption of
slenderness. For planar problems, further simplification achieved by
neglecting the nonlinear terms (6(q/ay)2 and (6q/6z)2  yields satisfactory
estimates for the coefficient.

i: 4
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Thus

cp(x,y,o) - (14b)

where CP is obtained from equations (lib) and (12).

It should be pointed out, however, that equations (llb), (12), and
(14) will not furnish realistic results for the pressures1 for a wing in
either subsonic or supersonic flow unless certain restrictions are imposed
on the gradient of cross-sectional area and its derivative S"(x). Con-
sider, for example, the pressure found along the line AB where regions
1 and 2 in sketch (b) join. In supersonic flow, one finds from equa-
tions (12) and (14b) that at this line there is a jump ACp in the pres-
sure coefficient given by

1 lim {/"(co)in 2e _ +'6Cp= CpJ Cp2 = --;1-0 O s2(co) - y2

4 jdt Au(x, t)] c ln 2 (15)

where

Ss"(Co) = s,"(co) - S2"(Co)

and where the usual assumption that S'(O) = S'(c o ) = 0 has been made.
Evidently, along the line AB a logarithmic singularity will occur in
the pressure distribution in going from region 1 to region 2 if
Sj"(co) S2"(co). (The infinity would of course be higher than loga-
rithmic if 6S"(co) is singular.) The formulas for the pressure coef-
ficients presented in this report and in reference 4 are therefore good
only for cases where the plan form and the slope of the wing surface are
sufficiently smooth so that there are no abrupt changes in either St or
S". (This holds true also for the formulas given in references 3, 6, and
7. The restriction on S", however, may be somewhat relaxed in employing
the slender-body theory of reference 8.)

'Although the theory may give spurious infinite pressures on certain
portions of the wing, the results obtained for the wave drag by integrat-
ing the product of pressure and surface slope over the wing may be finite
and reasonable.
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Even if there is no jump in the pressure coefficient at the line AB,

the slope of the pressure curve may not be continuous. It can be shown,
for instance, that a singularity will occur in the slope of the curve for
the pressure coefficient in case S"'(co) is discontinuous.

Wing on a Cylindrical Body

The equations presented in the foregoing sections for the wing alone
will now be modified to yield formulas for calculating the pressure dis-

tribution on a combination composed of a
UO symmetrical wing zu(x,y) = -zl(x,y)

mounted on an infinite circular cylinder
P. z) having radius Ro(see sketch (c)). TheI surface of the wing chosen here will also

be considered symmetrical about the xz
plane, but the method applies equally well

lo if this is not the case. The procedure
followed is essentially the same if the
fuselage is any body of revolution instead
of a circular cylinder.

In studying such combinations, it is
usually convenient to introduce a second

-plne coordinate system. Let the yz plane be
represented by a complex variable

y+iz =reie (16)

and then consider a t1 plane

,-plone iz, i= yi + iz, r 1 e i e l

- R R, s,
obtained from the plane by the
Joukowski transformation

Sketch (c)

+ (17)

The transformation (17) maps the t plane onto the plane so
that a circle representing a section of the body in the plane is
mapped onto a portion of the real axis in the t, plane, while the part
of the real axis outside the circle is transformed into an adjoining part
of the real axis of the t, plane. (See sketch (c).) It can easily be
shown from the equation that the geometric relations
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R1 = 2Ro

Yi = Y + y Yi 2  R 2

(18)

Y1 = 2Rocos e, YL 2 < R32

1  
= S + R 

2

hold for z, equal to zero.

The technique employed is to transform the boundary conditions from
the t plane to the tj plane and to find a solution in the latter
plane. The solution is then transformed back to the physical plane for

the completion of the problem.

Perturbation velocity potential at the wing surface.- A consequence
of the conformal transformation is that the complex velocities in the
two planes t and tj are related by the equation

dt,
v - iw = (v - iw) - (19)

or, in polar coordinates (ref. II),

v = v1 1 - 2 cos 2e + wiQ()2 sin 2e

w = w1 [1 - cos 26 - v,(R) sin 20 (19a)

Vr [Vi cos e + w, sin 6[- (R 1+ 2w,( sin

From these equations it follows that the boundary conditions in the z, = 0
plane are
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____ Uo(dRo/dx) = , Y 2  2R

2 sin 9 2 sin 0
(20)

2/,2
W l- 0 / 1  <Y 2oi

with w related to the streamwise slope of the wing surface by equa-
tion (2).

The two-dimensional solution ~ain the tj plane at zi 0 is,
from equation (7),

Si

q2(xyx,) = wl(xTnx)lnjyl - rq1Idn, (21)

Putt ing now
RO 2

and using relations (18) and the boundary conditions (20), one finally
has for equation (21)

f SW (92 - 2)(y2 - R0")
q2(xy) TI)n y2 dnj (22)

If one of the functions g given by formulas (8) is then added to this
equation for ip2 , the velocity potential on the wing may be obtained for
either supersonic or subsonic flow. Thus, for the supersonic perturbation

potential on the upper surface, there results

sU x (y2 2)(y99 - R04)j -

sup = 0  yxiif92 d
R0

x
S-inS2((x ln (23)

and for the subsonic potential I
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5O (x) 1 -y y2)(y2 n2 _ R04) li
(Psub :' ;ou(x,n)ln y2 j( 2  o n -

10tlo
U0 JO sgn(x - 9)St(E)ln I Jx - gdt(24)

0

Pressure coefficient at the wing surface.- The pressure coefficients
on the surface of the wing of the combination are obtained by differenti-
ating equations (23) and (24) with respect to x and then employing
relation2 (14b). Thus

cpsup = xf As(x(in~ 2 -
2  -I d +

Ro

- f2 ,)ln ( (x - 9)d (25a)
0

and

--- ) u(X )ln (a2 12 )(y 2 n2 - 1(411 +

"Psub i "" x y22
Ro

0

00; or, with the aid of equation (lib),

3I " i sub i __

Cpsub Ps"up Fp 2n - x - dx (26)

.As in the case of planar problems, the squared terms in the pres-
sure relation can be neglected in considering a combination whose body
is a circular cylinder. (See ref. 4.)
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The coefficient for a particular wing at some Mach number Mj, written
in terms of the coefficient at another Mach number M., is.

Cp =c + S"(x)ln (27a)Psup51 sUPo

and

Cpsu, Cp + S"(x)ln o(2)C~su)s sUho 0- 0271

where j = /JIM 2 
- i and fo = J1IMo - fl.

It should be noted that formulas (25a) and (25b) are not uniformly
valid for all values of Ro . If the radius Ro is equal to zero, the

equations reduce immediately to those
given previously for the wing without
a body. As the radius approaches
infinity, however, one finds that for-
mulas (25a) and (25b) yield a value of
the pressure coefficient that differ

T ya "  
- sy from the results for the wing alone by

/ ysX) a term equal to S"(x) in Employing
- - - - -- the equations for values of Ro that
------ .... are large violates the assumption of

2 slenderness according to the approximate
theory used herein.

When the wing mounted on the com-

bination is swept back, as shown in
sketch (d), the slope ?Au(x TI) is taken
equal to zero in the gap between the
trailing edge and the body. The for-
mulas obtained in regions 1, 2, and 3
for the supersonic pressure coefficient

Sketch (d) on the upper surface of the wing are
then as follows:

Region 1:

s(x) (yl - -
4)

2 , - ) (x, 1)in .... .. dl (+

2 x0

,, , . ,-f S.' (Oln 2- (x - Odt, (0 S_ x S Co)
' - J0
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Region 2: s(x)2 6 t(x) T Tn j(y2 2 )(y 2 )2  R0
4 ) dy +

CP2 - ' XJ I y2n2

t~ x)

o2 0 20

(co x S bo) (28b)

Region 3:

2 -(y2 12)(y2n2 . Ro4) +
CP3 = X f Iy2 d

t(x)

oo1Xf)' Sll(t)In(x - )dt + " S2'(t)In(x - )dt +

)2 x

2f S3 1(t) In Z x- t (bo : x :51)(28c)

3 o cO

bo

where bo is the value of x at which so = s(x). Use of the relation
(26) in conjunction with the above three formulas will furnish equations
for the pressure coefficient in subsonic flow in the various regions.

Wing on an Indented Body

In the previous formulas for the pressure distribution attributable
to thickness, the coefficient becomes infinite3 when the Mach number
approaches unity because the formulas contain a term involving S (x)ln

It is thus possible to construct slender configurations which will give
a theoretically finite pressure coefficient even at the speed of sound.
Under the assumptions of slender-body theory, this may be achieved if the
gradient of cross-sectional area of the configuration in a yz plane
vanishes identically. Combinations constructed in this manner on an

3This of course is not a property of slender-body theory alone.
Except in particular cases, steady-state linearized theory also in general
yields infinite pressures at 0. = .
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infinitely long fuselage are slightly indented in the vicinity of the
wing and possess, according to the theory, the important property of
having zero wave drag.

Velocity potential at the wing surface.- Let the surface

zu(X,y) = -z1(xy) of a symmetrical wing be specified and assume that
the indented fuselage is a body of revolution which deviates slightly
from a basic circular cylinder of radius R.. The cross-sectional area

S(x) of the exposed wing is then given by
IUo

S c(x) 4 Zu(xn)dy (29)

R(x)

y -s(x) yrS(x) where R is the radius of the indented
body. (See sketch (e).) In order for

/ the streamwise gradient of cross-
\ sectional area of the entire combina-

tion to be zero, the relation

y -R(x)- - -R(x) nR2 (x) = nRo - S(x), S(x) < < R0
2

, o(30a)

,I
Sketch (e)

or

2ndR -S'(x) (30b)
dx

must hold. Since the quantity S(x) is known from formula (29), equa-
tion (30a) can thus be solved for the radius R of the body.

Now the perturbation potential in the tj plane at zi = 0 has the

form

s1

qp2 (x yiO) wl(x,l)ln yn - n, drl (31a)
l

or

P2(XpyiO) wl (x, i)ln yl - d~i + .w(xpi13)lnjyi2 
-

(31b)

!IW
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with 
R 2r 25i +j a -9ya, "I -?2IR (32)

The term corresponding t6 the g(x) of equations (8), which is to be added
to this 9)2 o is zero since there is no change in the cross-sectional area
of the specified shape of the yz plane.

From the last relation in equation (19a) it follows (upon putting R
in place of Ro) that in the interval n12 < r12 tne boundary condition
may be expressed

w1= r (d.1/dx)U0  'R(3
ifO 2 J1 - (nj/r1.)2

For very thin wings, and for deviation R0 - R of the same order as the
wing thickness, the condition in the interval r1

2 < <i 1~ sapoi
mately

Ww (34)1 ~x
1 -R2TI12 lR 21eI

Making use of equation (33), one can then write the first term on
the right in equation (31b) as

3 f~xll 1Y3. - TI1Idill= U0R a;ln Y, ~2! R2  (35)

where, from equation (30b), the quantity R(dR/dx) may be replaced by
-1/2nr times the gradient of cross sectional area S'(x of the wing.

In the second integral in equation (31b), set

R2

and use relations (34J). The final form for the velocity potential at the
upper surface of the wing thus becomes

UO
(P (x,y,O0) 8 1 S(x)iln y +.

TI)?T 2
-R

4 ) (36

.O f~u(x TI) lnj (Y -n y2 jd R (6

- y-:,2
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Formula (36) for the velocity potential for a slender combination
whose body is indented according to the area rule (ref. 12) is evidently
independent of Mach number and therefore holds (within the assumptions
of the simplified theory) for subsonic, transonic, and supersonic speeds.
If the limits of integration are adjusted, the equation may also be used
for combinations with sweptback wings.

Pressure coefficient at the wing surface.- On the surface of the wing
the pressure coefficient can be found from relation (14a), that is,

6(p + 1"ZO?2

where the potential Y is obtained from equation (36).

APPLICAT IONS

The formulas which were given the preceeding part of this report will
now be applied for the purpose of performing detailed calculations of the
pressure distribution for some particular nonlifting combinations having
a symmetrical wing with constant chord.

Wing Mounted on a Body of Circular Cross Section

Pressure coefficient on the surface of the wing.- The wing of the
combination' considered here is mounted on a circular cylinder and has
an upper surface defined by

Zu(X,y) = T(com - s + y)4(s - y)(com - s + y) (38)

with
= Tmx +U

Zu(x,y t peX,-) obtaine r-Z(X,y) -- Z(X,-y)

and

3mco24T
.... 'This combination will be reear t as the bsic combination.
a ,t wn , t c t chord.

WigMutdo oyofCrua rs eto

Prssr cefiiet nth srac o hewig Te ig f h
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the constant T 0 being the maximum thickness. The profile resembles a
Joukofski section and is the same for all values of y. On the starboardside of the wing, the slope of the surface is given by the relation

u w(xy) (Cm- 4s + 4y) (40)x Us 2- s -y

From this equation it is seen that the slope possesses a square-root
infinity at the leading edge and is zero at the trailing edge.

The gradient of cross-sectional area of the wing is

S1'(x) - 4Tm 3(c0 - x)4x(co - x) = 4m zu(x,Ro), (0 :5 x :_ co) (41a)

in region 1 in sketch (f) and is

S2'(x) OP co < x < (so - Ro)/m (41b)

in region 2; for region 3,

S3'(x) = -4m zu(x,so), (so - Ro)/m < x < (s o - Ro + com)/m (41b)
Since S" is not continuous across ju.(
the line AB, the approximate theory
employed here will give unrealistic
results in the regions of the tips.
In calculating the pressures for the
wing-body combination, attention will EEtherefore be confined to regions 1and 2 only. The calculations to be Ox

given in subsonic flow will be based I
on the assumption that the tips are ,-Co
located far downstream and have no
effect on the other two regions.

Use of the equations (40) and
(41) in formulas (28a) and (28b) yields
the following final results for the
supersonic pressure coefficient on the
upper surface of the wing for regions 

-I Cca-

l and 2:

r. o

Sketch (f)
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Region 1:
CS 2TR ta- x 8xy(co x)+

l6Rtan -f-- + 2m(co-1Ix)/co 1+
Cpup n v 0c- X co(y2 R R 2)

F(x,y) + F(x,-y)- 2F(x,O) + F( - R02)j, -

(0 < x < co) (42a)

Region 2:

M2r8O+ 2a( 4x c) 4 + 2(4s -corn) CM+

(c~m -45 +y y Y(, 4 Ro 2 _ a ~- m-

(cm 4 4) + -m 4sm + 4 2/

_Z+R0
2/yJ

(co <5x, s com < y < x; a mx + R0 )

(42b)

* where

5 com + qI
* F(x, n) =(corn -45- 4n~) +T

S(co - x)(2s + TI) - (ljx + Roc0)J( 4 )

12 2 -XC x)(8 + n)(8 cor +TI

F(x,TI) =(com 4s - TI)

5+18 T,

(co - x)(2s + n1) -(Tix + Roco) + 4x(co x)(s + T)(com s I

(43b)

when com s 1>O0
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It is seen from equation (26) that the formulas for the pressure

coefficient in subsonic flow can be obtained by adding two terms to the
above equations for the supersonic pressure coefficient. Since the value

of S' in region 2 is identically zero, the terms to be added for region
1 become

1 Os'( ) d =-m 3 [4x 3co], (x < co)
-( xJ fx-~

0

and for region 2

.'x2t Jx - dt = "m{x - 3c0 + (cO - 4x)f ci , (x_ Co)(2x To 4b
0

The subsonic pressure coefficient on the upper surface of the wing can

therefore be written in region 1 as

M3T [ Co - X Osub]Cpsub = Cpsup, 11 3c0) + 2(4 CoJ--

and in region 2 as

where= PP+ m[:x- 3Co + (co - 4x)j f c°,J (45b)

where c psup is given by equations (42).

Formulas (42) and (45), which give the pressure coefficients on the
wing of the combination indicated in sketch (f), will be plotted and the
results discussed in a later section. An obvious result noted now is
that in region 2 the formulas do not depend on Mach number for either

supersonic or subsonic flow, but that the subsonic coefficient in this
region is always greater than the supersonic coefficient because the
inequality

hold fo a +a(co 4x > 0 (46)

holds for all values x 2! co.
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An a check,9 let us now consider the asymptotic behavior of equa-

tions (38), (142b), and (4!,b) far outboard along the wing. For this pur-

pose, we introduce a change in coordinate system by means of the trans-

formation

x = xnsin e + y1nsin e

y Ro= -nc~ e +ynsn e(47a)

yUnCS+n~n
(See sketch (g).) Setting tan e my

---- ddPone can then write

mxn + Yn

0- sly .jr *i+M i 2

/ y~yRomm nX

2 mx - (y -Ro)

yn yn x + m(y- RO)

Sketch (g)

and

M. = M.r + M2
(48)

Pn =1/11 +MI
2

Equation (38) thus becomes

zn 'T (cn xn) N /O

VL1e.
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which agrees with the approximate equation employed in two-dimensional
section theory for a thin Joukowski base profile of thickness ratio

4To (See ref. 13.) The pressure coefficient for such a two-
3 fc n
dimensional airfoil is

- 3- 4 Q n)] (4a)

Cp an Xn 3 J nCOn  \Cnj

or, written in terms of the xy system,

cp = -34Co2 [3com - 4 (mrx - y + RO)] (49b)

This equation is in agreement with the asymptotic expression of the pres-
sure coefficient for region 2 obtained far outboard along the wing from
either equation (42b) or (45b).

Pressure coefficient on the body.- The formula for determining the
pressure coefficient on the surface of the body is (ref. 4)

E 1 R (50a)

When the body is a circular cylinder, this relation reduces to

2
%= .

(5Ob)

It is apparent that application of equation (50b) requires a knowledge
of the value of the potential p in space, so that formulas (28), which
hold for z = 0, must be "analytically continued." One way that will in
effect accomplish this is as follows:

Set
ie

=y + iz =R o e

and form the function

O(x,O) ,p(x, ,O) + it(xxo) (51)
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where p(xtO) is taken from equations (23) and (24), with the function*defined by5

s~x)

(x, = wu(x,q)dq (52)

The constructed function (51) will obviously satisfy Laplace's equation
in the yz plane; and it can be verified without difficulty that the
boundary condition vr = 0 is also satisfied. The coefficient on the
body can then be calculated from the formula

P - 2 lRe(6) (53)

where the symbol Re means that the real part is to be taken.

For region 1, the final result obtained for the pressure coefficient
on the body in supersonic flow for the basic combination considered in
this part of the report is

m2 i' iecp =P -( 16R tan1 =O- - 2F(x,0) + F(x,Roe )+

F(x,Roe'i) + F(x,-Roeie) +.F(x,-Ro e'0&) +

CO l 8X(Co - x)e i
Re [2m(co - 4xx) J =O- n -

pco(em - 1)Ro

" ie mc r  + Ro e i

in(com - 4s + 4Roe ) 0 J (x _< co )

(54a)

where the function F(x,q) is given by equations (43). The result found
for the supersonic pressure coefficient in region 2 can be put in the form

5An arbitrary real function E(x) may, in general, be added to the
right side of equation (2). Such a function, however, would in no way
affect the real part of 4/6x. since iE is purely imginary.
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c [8 n, 2(4xI),x=vc + 2(4s -corn) ~Cr

p ~ ~ 4~ _+7- + -'*---i

ie
5 Roe -cm

(corn 4s -4ROe-' +e

5+ e Re 7

-Reie

(cm -4s+ 4e 1 ) 5 R~e - cm+

(com 4s +4 4Roei) 5-Rec ~ (x> co) (54b)

Corresponding formulas for the pressure coefficient on the body in sub-J sonic flow are obtained from the above two equations by adding to thema
the terms on the right of equations (44a) and (44b), respectively. For
any fixed value of y in region 2, relations (45b) and (46) furnish the

- inequality

c Psub > 0psup (5

which, as mentioned before, is also true for the coefficients on the wing.

Wing Mounted on an Indented Body

The constant-chord wing whose thickness distribution on the starboard
side is given by

z u(X,Y) T(Com - + y) (s - y(com - + Y), R(x) 15 y S a

a m + Rs (6)

T 3M2co2 '1*3
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will now be combined with an indented body of revolution which deviates
slightly from a basic cylinder in the manner that makes the local cross-

sectional area of the configuration
a constant. The wing has the same
profile along EE as the one in the
previous example. (See sketch (h).)
Since the gradient of cross-sectional
area of the combination is set equal
to zero, the wave drag, according to

I #y--x, the slender-body theory, is also zero.

ohThe cross-sectional area of the

- -E wing in region 2 is equal to the con-
stant

,2 (x) 4 zu(,n)dn c (57)

I" s -com

I I

_ _and the radius of the indented body
in this region is therefore the con-
stant

~0 @E 'x

Sketch (h) 0

(58)

Corresponding equations for region I are

S L _ 3 m c os j c m " - 2 s + 2 R ,
Sl(x) 4 Zu(X,n1)d~j -_ j '  o c s ..-

=12 com
R,

2[2(s - Rj)(7com - 4s + 4Rj) - 3com2]! (s R1 )(com - s + R, (59)

and

RS(x ) =xRo  0 < ; < < (60)111(x) R0 , 0< <
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Equation (60), however, does not give an explicit value of the radius
in region 1 because the function S1  itself involves R1 . Moreover,
the function S1  is a transcendental function of R1, so that equa-
tion (60) can only be solved by graphical or other methods of approxima-
tion. By means of the mean-value theorem, we can write the equation in

? the form
Sj(x) = Sj1 (x) + 4Zu(xd)(Ro - RI) (61)

where d is a certain value in the interval R1 < d < Ro, and

S 1 1 (x) = MS_ [2(14xco - 8xF - 3co2)!x(co - x) + 3coscos- 1 co 2x 62)

is the cross-sectional area of the wing in region 1 neglecting the addi-
tional area exposed by the indentation. Since the deviation Ro - R, is
assumed to be of the same order as the wing thickness, neglect of the
term 4zu(xd)(Ro - Rj) will evidently introduce only an error of the
second order in thickness. For very thin wings, the radius R, may thus
be approximated by

Rj(x) I 1 - S--(x) (63)
Roo

which is now an explicit function
of x. ,5

Sketch (i) indicates the varia-
tion of the radius as a function of _R_
x/co for 7o/mco equal to 0.1 and C477
values of Ro/mco  equal to 0.5 and
1.0. _ _ _ _ _ _ _ _ _ _ _ _

0 .5 /0 /51 2.5 30
Relations (1kb) and (53) can be

immediately employed for determining

the pressure coefficient on the sur-
face of the wing and on the body in Sketch (i)
region 2, because the portion of the body in that region is a circular
cylinder. Use of these relations with equation (36), (57), and (58), then
finally yields for the coefficient on the upper surface of the wing

c mar[ 2 (4s 3com) +2(4s - c 'm) c +
y + '

C ) .- cm-R2
2 /Y 4 -. ) s + R2Y

(s - com<y<s) (64)
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and for the coefficient on the body

p=M2-[(4s -3Com) + 2(4s -com) + (com 4s -4R2ee) + Co-R 2ei

(cm~s~~R~iB -Cam+ R eie ie s- com-Re

(Coa - .,,"e- R2el +

- ie
(com- 4s +4Re m-E (65)

These equations are employed for

Roo 2  comX_> co - --

the equality sign giving the value of x at the trailing-edge fuselage
junction. The two formulas do not involve Mach number and apply for sub-
sonic, transonic, and supersonic flight speeds. Comparison of formula
(64) with equations (42b) and (45b) shows that for a fixed y in region 2
the inequality

> Cpb> Cp66)

is satisfied when x > co . Values calculated in region 2 for the subsonic
and supersonic pressure coefficients along a section on the surface of the
wing of the basic combination will thus be less than the values obtained
for the coefficient Zp on the wing surface of the indented combination.

In region 1, the body is not cylindrical but it is found that the
squared terms in the pressure relation (37) may be neglected since they
contribute only quantities involving the second and higher order in wing
thickness that are small in comparison with - Even the first

term in relation (37) gives rise, for the particular combination consid-
ered, to some small terms of the second order. Such quantities, however,
are also found to be negligible. The formulas to be presented here for
the pressure coefficients in region 1 will therefore contain (like those
for region 2) only term of the same order as the thickness of the wing.
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NUMERICAL RESULTS AND DISCUSSION

Graphs of the pressure coefficients for a wing alone and for the

two wing-body combinations in sketches (f) and (h) are shown in figures 1,

2, and 3. Figures 1 and 2 give plots for the coefficients along several
spanwise stations of the basic combination (Ro/com = 0.5) for subsonic
and supersonic flow at mO - 0.5, while figure 3 presents plots of the
coefficient for the indented wing-body combination which are independent
of Mach number. The plot in figure 4 gives the variation of the pressure
on the body in the plane of the wing.

Figures 1 and 2 show that, except at the wing-fuselage juncture, the
pressure coefficients have a finite negative6 value at the leading edge
and increase to finite positive values at the trailing edge. On sections
which are cut by the plane x - co (i.e., passing through the trailing-
edge fuselage juncture) the slopes of the curves are discontinuous. It
is also apparent that the effect of the presence of the body on the coef-
ficient does not extend very far downstream beyond the trailing-edge
fuselage juncture; the difference between the calculations for the wing
on the combination and those for the wing alone, for instance, are too
small to show up in the plots for sections more than one chord length
from the body.

In figure 3, the pressure coefficients for nearly all sections on the
wing of the indented combination are very close to the curve for the two-
dimensional wing. The discontinuity in the slope of the curve that was
quite noticeable along sections such as BB of figures 1 and 2 is far less
apparent in figure 3.

The graph in figure 5 is the function which, according to equa-
tions (27), can be added to the values given in figures 1 and 2 for the

subsonic or supersonic pressure coefficient along the section AA and BB

of the wing to yield values of the coefficient at other Mach numbers.
(Sections CC, DD, and EE lie in region 2 where the coefficients do not

depend on Mach number.) For example, the pressure Coat the
(T0/C 0 ) m

leading edge along BB in subsonic flow for mo = 0.4 is using figures 1

and 5 in conjunction with equations (27), -4.1 -0.2 = -4.3.

Figure 6 shows isobaric charts of the pressure coefficients for the
wing without body in subsonic and supersonic flow at mo = 0.5, and also

. The occurrence of a negative pressure at the nose of a Joukowski-

like section is the result of the thin-airfoil simplification. A more

accurate theory would show a small region of positive pressure (i.e.,

a stagnation point with the maximum value equal to the impact pressure
of the component of stream velocity normal to the edge).

47
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a chart giving the two-dimensional results. The figures 6(a) and 6(b)
indicate that the pattern of the isobars in the region behind the trailing-
edge fuselage juncture is essentially the same as the two-dimensional in
figure 6(c), but that in the region near and upstream of the juncture, a
marked deviation from the straight isobars of the two-dimensional case is
evident.

Isobaric maps are also shown in figure 7 for the basic wing-body
combination in subsonic and supersonic flow, and for the indented wing-
body combination. Figures 7(a) and 7(b) illustrate that in the region
downstream from the trailing-edge fuselage juncture (even near the juncture
itself) the isobars are not much different from those for the wing alone,
and that the body therefore has little effect in this region. In the
region adjacent to the body, the pattern of the isobars is qualitatively
similar to the case for the wing alone but the pressures are lower. A
remarkable difference between the chart in figure 7(c) for the indented
combination and those in figures 7(a) and 7(b) for the basic combination
is that the isobaric pattern on the wing for the indented combination is
essentially two-dimensional over practically the whole wing.

Examination of the three charts in figure 7 also indicate that the
maximum negative pressure on the wing occurs at the leading edge near the
boundary between regions 1 and 2. In fact, it can be shown that the max-
imum occurs at the boundary. In view of the inequality (66), indentation
in accordance with the area rule reduces the maximum perturbation veloci-
ties on the wing.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics

offett Field, Calif., Oct. 7, 1954
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